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ABSTRACT

We consider the solutions of the First Painlevé Differential Equation w’’ =
z + 6w?, commonly known as First Painlevé Transcendents. Our main
results are the sharp order estimate A(w) < 5/2, actually an equality, and
sharp estimates for the spherical derivatives of w and f(z) = 27 1w(2?),
respectively: w#(z) = 0(|z|3/4) and f#(z) = O(|2|3/2). We also deter-
mine in some detail the local asymptotic distribution of poles, zeros and
a-points. The methods also apply to Painlevé’s Equations IT and IV.

1. Introduction

The Painlevé transcendents are solutions of Painlevé’s differential equations (I),
(IT) and (IV). Every local solution admits unrestricted analytic continuation,
and hence is a meromorphic function in the complex plane. Recent proofs of
this Painlevé result {14, 15] can be found in the paper [9] by Hinkkanen and
Laine for equations (I), (IT), and, by different methods, in the author’s paper
[23] for equations (I), (II) and (IV). We will present our results in detail only for
Painlevé’s first, equation

) w” = z + 6w?,

but note that the methods apply in cases (I1I) and (IV) as well; see Section 6 for
more details and hints.
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In a remarkable paper which has appeared in two parts, P. Boutroux [3] has
given a detailed description of the value distribution, and, in particular, of the
distribution of poles of the Painlevé transcendents. In a former paper [2] he had
established estimates for the order of growth of the first and second transcendents.
His papers, however, are hard to read, one reason certainly being that they were
written in the typical style of that time, the beginning of the twentieth century.
They also contain a lot of reasoning, which can hardly be understood. Thus,
there is reasonable doubt about Boutroux’s methods; details can be found in
Appendix B.

It is thus small wonder that several authors* made attempts to prove, for
example, an estimate like A(w) < 3 for the order of growth, although Boutroux
had stated that the exact order is 5/2**. We mention the book of Hille [8], the
paper(s) of Schubart and Wittich [21], and Wittich [24]; see also Laine’s book
[11]. All these attempts failed by different reasons. What is definitely known for
the first transcendents is the lower estimate A(w) > 5/2, which can be found in
the paper [12] due to Mues and Redheffer.

Our paper is organized as follows. In Section 2 we describe the main tool, and in
Section 3 the order estimate A(w) < 5/2 is established. The methods developed
there yield a lot of results about the value distribution of the first Painlevé
transcendents and information on their spherical derivatives w# in Section 4.
In Section 5 asymptotic distribution of zeros and poles is discussed. In Section
6 we describe how to adapt the methods for the requirements of equations (IT)
and (IV). In Appendix A we discuss the differential equation 3’ 2 = Q(y) for the
convenience the reader, while Appendix B is devoted to Boutroux’s papers.

2. The main tool

In the present section we will describe our main tool. It is always assumed,
without further notice, that w is some fixed solution of Painlevé’s first equation
(). If zp # 0 is a regular point of w, then we define a local scale with unit

1) r(20) = minJw(z0)| 72, w'(20)| 7/, 20| 7/}

* Caution: A Zentralblatt check (July 4, 2000) for the period 1990-1999 yielded
355 items having Painlevé’s name in the title.

** Note, however, that Boutroux had no definition at hand for the order of a mero-
morphic function. The order was defined only 20 years later in R. Nevanlinna’s
fundamental paper Zur Theorie der meromorphen Funktionen, Acta Mathemat-
ica 46 (1925). Boutroux himself only made statements about the order of certain
entire functions, e.g., he showed that E in w = —(E'/E)’, w a first transcendent,
has order of growth A = 5/2.
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(0~%/2 = 0~1/3 = +00). Then what we need is the following form of the theorem
on analytic dependence on parameters and initial values:

MAIN LEMMA: Suppose (z,) is a sequence of regular points with z, — oo and
sequence of scaling units (ry,), rn = r{z,), such that the limits

— T 2 R TR i o4
(2) Yo = nlggo row(zn), yo = nli)ngo row'(z,) and a= nlggo T Zn

exist. Then, if y denotes the unique solution of the initial value problem
(3) y" = 6y* +a, y(0) = yo, y'(0) = 4y,

we have, with respect to the spherical metric,

(4) raw(zn +rnz) = y(2)

as n — oo, locally uniformly in C.

Remark: We note the trivial but important fact that the limit function y cannot
vanish identically, since max{|y(0)|,{y'(0)|, |a|} = 1. Also, the rate of convergence
is Oy (0) — y(0)] + [y (0) = ¥/ (0)] + |a — raza| + 73).

Proof: Set

(5) Yn(2) = raw(zn + Tn2),
so that

(6) Yl = 6y2 + zarh F o2

and max{|y,(0)|,|y5(0)], |2nr2|} = 1 hold. By analytic dependence on initial
values and parameters we have

yn(z) = y(2)

in a neighbourhood of z = 0, and locally uniformly in C by Poincaré’s result;
see, e.g., Bieberbach [1], p. 14, or the books of Golubew [4], Hille [7, 8] and
Ince [10]. |

Remark: The “Ansatz” (5) is strongly suggestive of the Pang version of the so-
called Zalcman or re-scaling Lemma (see [26], [16], {17]). It will, however, turn
out that the limit function y may be a non-zero constant, which is excluded by the
Zalcman-Pang Lemma. There is thus reasonable doubt whether the Zalcman-
Pang method applies in this case, but there is no doubt that I was inspired by
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this method. It should also be mentioned that perhaps the first most successful
application of re-scaling methods was performed by Painlevé himself when classi-
fying the second-order differential equations without movable singularities other
than poles!

3. The order of growth
We start with a technical lemma.

LeMMA 1: Let (g,) be a sequence of zeros of w, and (z,) be any other sequence
such that |z, — gn| = 0(r(2s)). Then r(z,) = O(r(gs))-

Proof: We apply the Main Lemma to the sequence {g,) with scaling unit
pn = ¥(gn), where we assume that the limits go = lim, 00 p2w(gs) = 0, 7 =
limy, 0 p2w'(gr) and @ = lim, o pign exist (choose a subsequence, if neces-
sary). Then, besides the asymptotics (4) with r, = r(z,), we also have the
asymptotic relation p2w(g, + pnz) — §(z). Note that § is non-constant, this
following from g(0) = 0. This is also true for y, since with €, = (¢n — 25)/rn = 0
we have y(0) = lim,, 00 r2w(25) = limy, 00 72w (2, + Tnén) = 0 by uniform con-
vergence. Since both functions are non-constant, they have poles w and 7, say
(see Appendix A), of smallest modulus, and so by Hurwitz’ Theorem w has poles
at z, + rawy and ¢, + PaTh, Wy — w and 7, — T, respectively. Thus,

Tnlw' S‘Zn - (Qn + pnTn)l + O(T*n) + o(pn)
<pa|T| + 0(rn) + 0(pn),

and hence r(2,) < 2%k r(gn), n > ng, follows. |

lw]
Let (g,) denote the sequence of zeros of w, and let € > 0 be any positive
number. Then Q(e) will denote the neighbourhood

Q) = lz ¢ 12 - gal < erlan)}

of the sequence (g,,). Our first application of the Main Lemma will be

PROPOSITION 1: Let w be a solution of (I). Then given ¢ > 0, the expression

|w!(2)||w(2)|~%/? is bounded outside Q(e). In particular, the spherical derivative
w#(z) = |w'(2)|(1 + |w(2)|?)~* is bounded there.

Proof: Suppose (zy,) is any sequence such that 0 < |2,,| — oo and

2 < |w' (zp)||w(zn)| 7% = o0
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as n — co. We note that z, is not a pole of w. Then, choosing a subsequence of
(25), still denoted (z,), we may assume that the limits (2) exist. Then the Main
Lemma applies with yo = 0, this following from r2w(z,) = o((|w’(2,)[r3)¥/?) =
o(1), and hence, by Hurwitz’ Theorem, there exists z/, — 0 with w(zp+r,2,) = 0.
We thus obtain for the zero ¢, = 2, +rp2}, of w that |z, — ¢n| = o(rs) = o(r(g»))
by Lemma 1. This proves Proposition 1, since the statement on the spherical
derivative follows immediately. |

Remark: The Main Lemma works like a search algorithm. If a certain inequality
or asymptotic relation has to be proved, which should be valid outside some
(possibly unknown) exceptional set, one chooses a sequence (zy), zp, — 00, such
that the inequality is not valid on (z,). Then, applying the Main Lemma, it
turns out that the sequence (z,,) approaches automatically the exceptional set.
The inequality thus proves valid outside this set, which, moreover, is detected by
the test-sequence (z,).
One more example for this method is

PROPOSITION 2: Given € > 0 we have
Izl = O(lw(2)]*) and |w'(2)||w(z)|~ = O(l2|73/*)
as z — oo outside Q(e).

Proof: The second statement follows from the first one and Proposition 1. To
prove the first assertion we again consider a sequence (2,), 0 < |2,| — o0, such
that |w(z,)] = o(|zn|"?), hence |w(z,)| = o(r(z,)~2). We may assume, as we
always do, that with r,, = r(z,) the corresponding limits (2) exist. In particular
we again have yy = 0, so that, as was the case in the proof of Proposition 1,
|2n, — @n| = 0(ry,) = 0(r(¢r)) holds for some sequence (gy,) of zeros of w. ]

Before we come to our next proposition, which plays the central role, some
comments are in order. Equation (I) has a first integral

(7) W’ =2w+ 4w - 2U with U’ = w.

At a pole p, w has the Laurent expansion

(®) UJ(Z)Z@-jlp—)g—%(z—p)2~%(z—p)3+h(z—p)4+---.

The coeflicient h cannot be determined from (I). The subsequent coefficients are
(universal) polynomials in p and A. It turns out that 14h is the local constant
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of integration,

3 1

- 53—+ e

(9) U(z):;}lpﬁ-Mh—g(z—p)

30 +...7

and that the value of
(10) V=2U-v/w
at z = p is the crucial number V (p) = 28h.

ProPOSITION 3: Given ¢ > 0 and ¢ > 0 there exists K > 0, such that for
z € C Q(e) either |V (2)||lw(2)|~2 < K|z|}? or else |w(z)|~2 < o]z|~! holds. In
any case we have

V) . V()

o 1/2
(2 <7 T T K

outside Q(e).
Remark: 1t is indispensable that the exceptional set Q(¢) is independent of the
choice of o > 0. Tt is just K which depends on ¢ (and €).

Proof:  Suppose (2,,) is any sequence with 0 < |z,| — oo and z, ¢ Q(e), such

that
[V (zn)|
[w(2n) 2] 2n|*/2

as n — co. Note that z, is not a pole of w. Also, [2,] = O(|w(z,)|?) holds by

0< — 4o

Proposition 2. From
w'? = 22w+ 4wd -V —w' Jw

it then follows that

Vi) 1w dwiz)| | 2zl |w'(z0)|
lw(zn)Plznlt/2 7 fw(zn)Pleal © fznl? 0 w(za)] - lw(zn) Pzl

The right hand side of this inequality is O(|w(2,)|}2.]~'/2) by Propositions 1 and

2, and hence we have |z, ||w(z,)| ™2

— 0 as n — oo. This proves Proposition 3.

So far our arguments were completely local. But it is obvious that one cannot
prove any global property of a single solution by purely local considerations—
this was one reason why former attempts failed. These local results have to be
connected, and one possible link is the linear differential equation for V,

V= - - V = a(z) + b(2)V,
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and the resulting integral equation

(11) V(z) = Vizg) + / (alt) + bV (1)) dt,

T

where I' is any path of integration joining 2y with z and avoiding the zeros of w.
By Propositions 2 and 3 from (11) then follows

VI W+ [ (o504 ki)
o > 0 arbitrary and K = K(o,¢) > 0, whenever I is a path of integration joining
zo with z outside Q(e).

To proceed further we will ignore the exceptional set Q(¢) for one moment and
show by a Gronwall-like argument that |V (z)||z|=3/2 is bounded outside Q(e),
which we ignore. Suppose that N is a bound for |V(zg)| on |z¢| = Ry > 1, and
set M(R) = max{|V(2)||z|7%/?: Ry < |2| < R,z ¢ Q(¢)} for R > Ry. Assume
also that the maximum is attained at z; = pe*®, Ry < p < R. Choose o = 1 and
assume that the straight line segment I joining zy = Rge*® and 2; does not meet
Q(¢). Then on T we have |V (t)|[t|"* < M(R)|t['/2. From this it immediately
follows that

M(R) < N+ (M(R) + K)Jaal ™2 [ e/21de) < N+ 204 () + K),
r

and hence M(R) < 3N +2K.

This is the manner in which we will prove Proposition 4 below. We have,
however, to ensure that the disks |z — ¢,| < er{g,) do not form barriers like
the Great Barrier Reef. This will be done in Lemma 2 below by a slight
modification of the exceptional set Q(e).

LEMMA 2: Given any set Q(¢), € > 0 sufficiently small, there exists Ry > 1
and an open set A(e), such that Q(e) N {z: |z| > Ro} C Ale). The connected
components of A(e) are some of the disks

Apley ={z: |z = qn| < €bnrig,)}, 1 <6, <3.

Proof: First we will show that there exists 6 > 0 with the following property:
given three zeros of w, then at least one of them has distance at least ¢ from the
other ones, distance measured in local scale—in other words, the set Q(€) consists
of atoms and 2-molecules only, provided e is sufficiently small. For suppose to the
contrary that there exists some sequence of disks Dy, = {2: |z — zp| < 7nr(2zn)}s
0 < n, — 0, such that D,, contains three (or more} zeros of w, one being z,, itself,
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Then the Main Lemma applies to the sequence (z,), and by Hurwitz’ Theorem
the limit function y has at least a triple zero at z = 0, which is impossible for
y(2) #0.

We increase the radius of each disk F,, = {z: |z — ¢n| < er(¢s)} by the factor
3 and set E), = {z: |z — qn| < 3er(gn)}. If we first take e sufficiently small and
then n sufficiently large, we see that each E/ intersects at most one disk E; ,
m # n. In case E,, NE,, = @ for m # n we set A,(¢) = E,. Now suppose
E, N E,, # 0 and note that m is uniquely determined. Then if r,, > r,, we set
An(€) = EJ, and A,(e) = E/, otherwise. Then, obviously, Lemma 2 is true with

Ale) =, Anle)- |

PROPOSITION 4: Given € > 0 sufficiently small we have V(z) = O(|z|>/?) outside
A(e) and, in particular,

(12) Vips) = O(lpn|3/2) as m — 0o,

where (p,,) denotes the sequence of poles of w.

Proof: We proceed as before where we ignored the set Q(e). Let Ry > 1 and
the set A(e) be chosen as in Lemma 2, and define M(R) for R > R, as was done
above, but now taking into consideration the exceptional set A(e) D Q(e):

M(R) = ma,x{{V(z)Hzr?’/z: Ry <|z| <R, 2z ¢ Ae)}.

This maximum is attained at z; = pe*®, Ry < p < R. Let L be the radial line
segment joining zp = Roe’® with z;. If L intersects some disk Ay, (€), we replace
part of L by part of the boundary of A, (€). Also, if 2o is in some disk A,,(€), we
replace zp by the point of L ﬂm with largest absolute value. In this way we
obtain the path of integration I'. It is obvious that [ |t|'/2|dt| < m|z1|3/2. Also,
for |V (20)| there exists an upper bound N which is independent of R. Since on
T we have |V (¢)||t|™* < M(R)|t|'/2, we finally obtain, choosing 7o = 1/2 and
proceeding as before, the inequality M(R) < 2(N + K), and hence

V(z) = 0(21/%)

as z — oo outside A(e).

The centers of the disks A, (€) are zeros ¢, of w, and the Main Lemma applies
to (a sub-sequence of) the sequence (g), yielding a limit function y(z) with
y(0) = 0. Thus y is non-constant, and the poles of y have euclidian distance
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r > 0 from the origin, and so, for n sufficiently large and € sufficiently small, the
disks Ay, (€) contain no poles of w, i.e., (12) is valid. |

More or less a corollary of Proposition 4 is

THEOREM 1: Let w be any Painlevé I transcendent with sequence of poles (pn).
Then
S Il =007 ast oo,
0<|pn|<r

and the Nevanlinna functions satisfy
N(r,w) = O(r®?), T(r,w) = O(*?) and m(r,w) = O(logr).

Remark: For notation in Nevanlinna Theory see the monographs of Nevanlinna
[13] or Hayman [6].

Proof: Let p be a pole of w, |p| > 1, say. Then w has the Laurent series
expansion (8) with 28k = V/(p), and hence |h| = O(|p[*/?) as p — oc. Also, the
coefficients ¢, = ¢, (p, h) satisfy the recurrence relation

n—4
(n®~n—12)c, =6 Z CuCnp—2

y=2
for n > 5, from which it is easily deduced that |c,| < M™*2 for n > 5, where
M = max{|p|*/4, |h|'/%} = O(|p|*/*). Thus the series for w converges in |z —p| <
clp|~1/4, where c an absolute constant. Hence the disks |z —p,| < 1c|p,|~/* are
mutually disjoint, and a simple geometric argument then gives the first assertion
of Theorem 1. From this the inequalities n(r,w) = counting function of poles
= O(r%/?) and N(r,w) = O(r%?) follow. Since m(r, w) grows like the Nevanlinna
error term, see Wittich [25, p. 80], we finally obtain T(r,w) = O(r®?) and
m(r,w) = O(logr). |

Combining Theorem 1 with the result of Mues and Redheffer [12] we obtain

THEOREM 2: The first Painlevé transcendents have order of growth

1
A(w) = limsup log T(r, w)

700 lo

=5/2.

Remark: From (8) it follows that w has the form w = —(E’'/E)’, where E is
an entire function with simple zeros at poles of w. Since the canonical product
P having these zeros has order of growth 5/2, and since E = Pe®, Q entire, it
follows easily from w = —(P’/P + Q') that the Nevanlinna proximity function
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of Q" is m(r, Q") = O(logr), and hence @Q is a polynomial. In fact it was shown
in [12] that the degree of @ is at most [A(w)] = 2; see also Boutroux [3]. Hence
ME)=5/2 and

w(z) =Y [(z—pa)"2 =977 +co,

provided z = 0 is not a pole of w; otherwise the term 2~2 has to be added.
Similarly, U has the partial fraction expansion

D
U(z) = —Z [((z = pa) "+ 2072 + 07t +coz +
n=1

4. Value distribution of w and U

In Proposition 1 we have shown that the spherical derivative w# is bounded
outside small disks {z : |z — ¢»| < er(g,)} about the zeros of w. We will now
complete this result by proving a sharp estimate for w# inside these disks. This
estimate shows that a sharp order estimate cannot be obtained by just estimating
w¥.

Before estimating w# we extend the Main Lemma to sequences of poles. Noting
that min{[p|~1/4,|h|71/6} is a (good) lower bound for the radius of convergence
of the series (8), it would be quite natural to define a local scale at a pole p by
r(p) = min{|p|='/4,|h|~1/®}. Since, however, by Proposition 4, |h| = O(|p|>/?)
holds, we (may as well and) will define r(p) = [p|~/%. The Main Lemma is valid
in this case, too:

MAIN LEMMA FOR PoLES: Let (p,) be a sequence of poles, such that for r,, =
|pn|~1/* the limits a = lim, o0 Pori and 1 = limy, o hy,rS exist (note that the
sequence {h,r8) is bounded). Then

erLw(pn +rpz) = y(z)
as n — oo, where y is the unique solution of

y' =6y’ +a, |a| =1,

with pole at z = 0 and Laurent series expansion

a
y(z):z_z—Ez2+nz4+0626+-~.
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Remark: Note that, in general, n is a free parameter! The first integral of the
differential equation above is

y'? = 4y® + 2ay — 287,

From the above result it is easy to deduce the following technical lernma:

LEMMA 3: Let (g,) denote the sequence of zeros of w. Then r(gy) < |g,| /4.

Remark: Here and in the sequel a,, =< b, means a, = O(|b,|) and b, = O(|a,])
as n — 00.

Proof:  Applying the Main Lemma to (a subsequence of) the sequence (g,,) with
rn = r{gn) we obtain the asymptotic relation

r2w(gn +1n2) = y(2), y(0) =yo = 0.

Then y has a pole z = w, say, of smallest absolute value, which by Hurwitz’
Theorem gives rise to a pole p, = ¢, + rnw, of w, w, — w. Now the modified
Main Lemma applies to the sequence (p,) with local scaling unit p,, = |pn|_1/4
and limit function §(z) = 272 + - satisfying §" = 63> + @, |a] = 1. This
y has a zero z = 7 of smallest absolute value (see Appendix A), giving rise
to a zero q, = pn + pnTn of w, 7, — 7. We thus may conclude that, with
P = |pu| 7% ~ lgal T4,

lT‘pn §|q; - pn| + O(pn) < |Qn - pn| + O(pn) +_O(r((In))
=r(gn)lwl + o(pn) + o(r(gn)),

which gives
1|7l

S |—1/4
2 |w]|

r(g,) > for n > ng.

|Qn

On the other hand we have r(g,,) < |g,|~'/* by definition, and so r(g,) < |gn|~1/*
follows. 1

Remark: One can prove a similar result for any sequence (z,), provided (z,)
stays away from the sequence of poles in a certain way; see Proposition 5 below.

Lemma 3 and the fact that r(p,) = |p,|~/* lead us to introduce the Riemann-
ian metric

ds = |2|Y*|dz|;



40 N. STEINMETZ Isr. J. Math.

the distance d(a,b) between a and b then is the infimum of the lengths fw ds,
where -y ranges over all paths joining @ and b, and the disks

D(a,7) = {z: d(z,a) < r}

are comparable with the euclidian disks |z — a| < 7|a|~'/4, provided |a| is large
compared with r.
Besides the sequences (p,) and (g,,) of poles and zeros of w and the sets P and

Q, we introduce two more sets and sequences:
S:  set of zeros of w'  {s,): sequence of zeros of w’

T: set of zeros of U (tn): sequence of zeros of U
Then the distances between different poles of w are bounded away from zero,

and the distance d(P, Q) between P and Q is positive. Also, given € > 0, the set
Q(e), say, is approximately the e-neighbourhood of Q with respect to the metric
d. We thus re-define
Q(e) = {z: d(2,Q) < ¢},
and similarly for other sets like P,S, T.
Before proceeding further we will complete Proposition 2 and Lemma 3 in a
certain way.

PROPOSITION 5: Given € > 0 we have |w(z)| < |z|}/? outside Q(¢) U P(e), and
lw'(2)] = O(]2[*/%) outside P(e).

Proof: We have already shown in Proposition 2 that |z| = O(|lw(z)|?) as z = oo
outside Q(¢). Now suppose (z,,) is a sequence outside P(e), such that z, — oo
and 7, = r(2z) = 0(|2,|~%/*). Then the usual procedure yields rZw(z, +rnz) —
y(z), where y solves y"" = 6y®. Since y # 0, y is non-constant, and thus has a
pole z = w, say (see Appendix A). By Hurwitz’ Theorem, w has a pole p, =
Zn + Tnw +0(ry), 80 that |2, — pn| = |w|rs + o(ra) = O(IZn,_1/4) = O(lpn|_1/4)a
which contradicts our hypothesis z, ¢ P(¢). We thus have 7, < |2,|7Y/%, and
50 |w(2a)] = O(|2a['/?), thus Jw(za)] < |2a|"?, and |w'(zn)] = O(lzn|**) by
definition of r{z,). |

Remark: Note that we may not conclude |w'(z)| x |2|>/* outside S(¢) U P(e)
by the following reason: if we suppose |w'(z,)| = 0(|zn|?/*) on some sequence
(zn), then the Main Lemma applies, leading to y” = 6y% + a, y'(0) = y = 0.
If Hurwitz’ Theorem would apply we would, of course, obtain d(z,,S) — 0 as
n — oc. The limit function y, however, could be a non-zero constant, so that
Hurwitz” Theorem would not apply to the sequence of derivatives (y},).

The result already announced is now
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THEOREM 3: Given ¢ > 0, the spherical derivative of w satisfies w#(z) =
O(|z]3/%) inside Q(¢), and w#(z) = O(|z|~1/4) outside.

Proof: In Proposition 1 we have already proved boundedness of w# outside
Q(e). Moreover, from Proposition 5 it easily follows that w#(z) = O(|z|7V/%)
outside Q(e) U P(¢). It is, however, easily seen that the neighbourhood P(e) of
poles is not really exceptional for that inequality. Finally, from Proposition 5 it
follows w#(2) < |w'(2)] = O(|2]3/*) for d(z,¢qn) < €. ]

Remark: The exponent 3/4 is sharp, except when we are in the quadratic case
(see Appendix A): w#(q) = |w'(q)| < |g|>/* holds at any simple zero q of w. In
the quadratic case, however, the zeros of w occur in pairs very close to zeros of
w’, so that the effect on w# could be w#(q) = o(|q|*/*).

It is obvious that the estimate given in Theorem 3 leads to T(r,w) = o(r7/?)
in the best case. On the other hand, it is not hard to see that f(z) = 2~ w(2?)
has spherical derivative f#(z) = O(|z[>/?), which gives T(r?,w) = T(r, f) +
O(logr) = O(r®), but only a posteriori.

We now prove a result on the spherical derivative of U which is similar to
Proposition 1.

PROPOSITION 6: Given € > 0, the spherical derivative U# is bounded outside

the d-neighbourhood T(€) of the sequence of zeros of U.

Proof: Let z, be any sequence such that U#(z,) — co. Then from U#(z2) =
lw(2)|(1+|U(2)|?)~1 it follows that [w(z,)| = oo and |U(z,)| = o(|w(zn)|*/?). As
before, the Main Lemma applies to the sequence (z, )}, and from w? 4wl 2w =
—2U and y,,(2) = r2w(z, + 7az) it then follows that y,? — 4y® — 2ay, — 0 as
n — oo. Also,

rU(2zn) = O(Tnlw(zn)Il/z) = 0(|yn(0)|1/2) —0
as n — oo, this giving
roU(2n + 72) = Yoz + y622/2 4o,

and so U(z, + rpz) has a zero z),, 2/, = 0 as n — oo. Thus, for t, = 2z, + r,2),
there follows d(z,,, tn) < |20 4|20 — tn| = |2n|/*rs|2,| < |2,], this showing that
U# is bounded outside the union of disks D(t,, €). |

To identify the zeros of U, we have to discuss two different cases.
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PRrROPOSITION 7: Let p denote any pole of U with |p| sufficiently large and asso-
ciated number h. Then the following is true:

1. There exists o > 0, such that for |p| < o|h|* the image under U of the
disk T = {z: |2 — (p+ (14h)~1)| < (10||)~}, say (the radius is less than
Vo|p|~1/*), covers the disk |u| < 8|h|. In particular, U has a zero in T.

2. If |h| < C|p|/* for some C > 0, then there exist c; > ¢1 > 0, depending
only on C, and a zero t of U with ¢; < d(t,p) < ¢a. Also, given € > 0,
the image under U of the disk T = {z: |z — t| < e|[p|~*/*} covers some disk
{u: [u] < p(e, C)lp|*/*}.

Proof: Both assertions will be proved by contradiction. We assume that for some
sequence of poles (p,) with associated sequence (h,) the assertion is false, and
extract an appropriate sub-sequence, again denoted (p, ), such that, in the second
case, the respective limits ¢ = 141lim,_c hylp,|"* and a = lim, o po /[Py
exist.

In the first case we consider the re-scaled function z — h,*U(p, + h;'lz),
which is close to M(z) = 14 — 1/z for v, and hence |h,|, large. This Mébius
transformation M maps the disk |z — | < 75 to the complement of the disk
lu— 343| < 248 Qipce 343 > 5 4 8, U maps the disk |z — (p, + (14h,)"1)| <
(10|hy])~! onto a domain which covers the disk |u| < 8|h,|, provided o, =
lpy||hy| =4 is sufficiently small. The proof of the first part is thus finished.

To prove the second part we re-scale by the factor 7, = |p,|~/4 to obtain, as
v — 00, the limit function —((2) + ¢ =271 +c+c12+- -+, where |c| < 14C. The
derivative of this limit is some Weierstrass P-function satisfying p" = 6p*+a, and
from |hy| = O(|p,|V/4) = o(|p,|3/2) it follows that g also solves p'? = 4p® + 2ap;
see Appendix A. Thus p with associated Zeta-function ¢ has a quadratic period
lattice n(Z x Z). Its mesh-size |n| depends only on a, and hence from |a| =1 it
follows that it is uniformly bounded and bounded away from zero. Now —((z)+c¢
has a zero z = 7 of smallest absolute value, depending only on the period lattice
and on ¢, and T corresponds to a zero t, ~ p, + r,7 of U. This proves existence
of a lower bound ¢; and an upper bound ¢, for d(¢,, p,), these bounds depending
only on C. Finally, the image under z — —((z) + ¢ of the disk {z: [z — 7| < €}
covers some disk {u: |u| < 2p}, where p has a lower bound p(e, C') only depending
on ¢ and C. Hence the disk T is mapped by U onto some domain which covers
the disk |u| < |p,|'/*p, provided v is sufficiently large. |

Remark: In the second case the position of the zero ¢ depends on the constant
c. It is asymptotically associated with the pole p in the same sense as is the zero
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7 of —((z) + ¢ with the pole z = 0.

We do not know whether both alternatives in Proposition 7 actually may occur,
and, if not both, which one will occur in general. The first one indicates that
value distribution of U takes place very close to the poles of w {and U). In the
second case nothing can be said about the positions of zeros. Of course, there
are many zeros, this following from N(r, 1/U) ~ T(r,U) ~ 3T(r, w).

By analogy with the Weierstrass Zeta function the first case should occur, as
it does in the degenerate case. One more reason to believe this is that in the
second case |h| has to be very small compared with |p]|.

From Propositions 6 and 7 there easily follows

THEOREM 4: Given € > 0, the spherical derivative of U is bounded outside T{e),
and satisfies U#(z) = O(|z|) inside. If the zero t is bounded away from the set
of poles, i.e., if d(t,P) > & (this is the second case in Proposition 7), then we
have U#(z) = O(|z|'/?) in D(t,€).

Proof: Boundedness outside T(e) was already proved. If the zero ¢, is close to
some pole p,, ie., if t, = p, + 1/(14h,) + o(|hn|!), we then have r(t,)™! =

max{|w(ta)['/2, [w' (ta)/3, [ta]/4} = lh l) O(jpx|*/?), and the Main
Lemma then yields U#(z) < |w(2)| = O(r(tn)™2) = O(p.?) = O(|z®).
Otherwise, for d(t,,P) > 4, from r(t,)~! [ 2|4 then U#(z) = O(|z|'/?)
follows. 1

5. Asymptotic distribution of poles and zeros

It is not hard to draw a lacal picture of the asymptotic distribution of poles and
zeros by using a variant of the Main Lemma. We note that it is not necessary for
the scaling factor r,, to be real and positive. Suppose (p,,) is a sequence of poles
with associated sequence (hy,). If we re-scale by the factor p, = (—%pn)_l/ 4, say,

yn(z) = piw(pn + Pn2),

and assume that 7 = 28lim,, , pghn exists, we always arrive at

"=6y?—3/2, ¥ =4y -3y

and

3
y(z) =272+ =2 + 7 4

507 Tagt T
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Hence, in any neighbourhood d(z,p,) < R of p,, n large, the distribution of poles
and zeros of w is approximately the image of the distribution of poles and zeros
of ¥ about ¢ = 0, under the map

9 —1/4
(,pn) =pn + (—gpn) C.

To be more precise we have to consider two cases: A = 27(1—7n3%) # 0 and A = 0,
i.e., n = 1; see Appendix A. In the first case let L denote the period lattice of
y (including the trivial period 0), while in the second case L denotes the integer
multiples of a primitive period of y. Then we have

PropPoOSITION 8: Given any radius R > 0 and any tolerance ¢ > 0, there exist
K > 0 with the following property: if p is any pole of w with |p| > K, then
for D = D(p, R) the Hausdorff distance (measured with respect to the metric d)
between P N D and ¢(L,p) N D, for some suitably chosen L, is less than o. The
corresponding result is also true for the set Q of zeros of w, and for the set S of
zeros of w'.

Remark: We note that the a-points of w are contained in small disks D(g, €)
about the zeros. Thus, value distribution of w takes place in Q(e), as is also
indicated by Theorem 3. The poles, however, are separated from the a-points.
We would of course have obtained the same result if we would have started
with a sequence of zeros. If, in some large unbounded domain S, the limit
n = 28lim,,_, o, hnpS were to exist, the above local picture would asymptotically
be a global one in S. In particular, for n = 0, the poles of w in S then would
asymptotically form a square grid, distances measured with respect to the metric
d.

What happens in regions which contain no zeros or poles? A complete answer
can be given for large regions.

PROPOSITION 9: As z — 0o and d(z, P) -+ oo the following asymptotic relations

hold, for some suitably chosen branch of z — z~1/4;

w(z)z” Y% = iy/1/ )27¥% 50 and U(2)z732% - iy/2/27.

Remark: We do not know whether large pole-free (or zero-free) regions exist,
this probably depending on initial values. A similar remark applies to the degen-
erate case—asymptotic distribution of zeros and poles along lines.

Proof: Let (z,) be any sequence with d(z,,P) — oco. We then re-scale by
the complex factor p, = (—%zn)_l/ 4 and obtain a limit function y satisfying
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y" = 6y? — 6. If y were non-constant it would have a pole z = w, and so w
would have a pole p, ~ z, + ppw with d(z,,p,) < lw|, which is against our
hypothesis. Thus y is constant, hence y?> = 1 and w(z,)%2;! — —1/6 and
W (20)220 "% = o(|pn|~%|2a]~2) — 0 as n — oo follow. Finally, the relation

—2U = w'® — 4w® - 22w gives U(zn)zﬁs/2 - 2,/-1/6. |

We conclude this section with several remarks, which also throw some light on
our method and its connection with Boutroux’s.

1. To describe the asymptotic distribution of poles and zeros it is also conve-
nient to use the Riemannian metric ds = |z['/#|dz|. Denote by H the half-plane
Re ¢ > 0, say. Then ¢(¢) = e (%C) 45 maps H conformally onto some sector
S of angle width 47 /5, the position of S depending on . The geodesics in S
are the images under ¢ of straight line segments in H. Then ¢: (H, |.|) — (S, d)
is a conformal isometry, and the same is true if H is replaced by an euclidian
disk D = {¢: | — (ol < R} C H (or any convex domain) with image domain
¢(D) = D(¢((g), R). Then, in the situation of Proposition 8, we place the set L
to the {-plane. Given a pole p = &(p’) of w with sufficiently large absolute value,
the euclidian disk D(p’, R) is mapped by ¢ onto the disk D(p, R), and the image
of some LN D, p’ € L, coincides approximately with the set PN D.

We consider the sector S = {z: |arg z| < 27/5}, say, which is the image of H
under z = ¢(¢) = (3¢)*/>. Since |z|~/2w(z) is bounded outside P(e), it is quite
natural to introduce new coordinates ( = £2%/4 and W(¢) = 2~ /2w(2). This is
actually what Boutroux did, the result in H being the differential equation

AW W)
25 (2 ¢

Since W and W’ are bounded outside the set P(e) = ¢~1(P(e) N S), we may
regard

W' =6W2+1+

_AUWQ) WO

as a known function of (, a coefficient which satisfies

A(Q)=0(¢™)

as ¢ — oo in H outside P(e). The euclidian distance between any two poles of
W is bounded away from zero. With this a priori knowledge it will probably be
easier to verify Boutroux’s arguments (see also Appendix B).

Suppose ((») is a sequence in H, |{,| — co. We set z, = ¢#(¢,,) and assume
that either z, = py, is a pole or else d(2,,P) > § > 0. Then, for |z| < R, say, we
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have
W(Cn + Z) :(Z;I/Z _ (5_4)1/42777/42, + .- )’I.U(Zn + (%zn)—l/‘lz + .. )

4
o0z + (5 20)42),

i.e., W((n + 2) is approximately w re-scaled. We finally remark that W# is
bounded in H.

2. The class of first Painlevé transcendents is invariant under the transfor-
mation w(z) — o?w(0z), 0® = 1. There are also one-dimensional invariant
subclasses: one of them consists of solutions wg(z, u) with we(0, ) = 0 and
w§(0, 1) = p, and the other one is formed by solutions weo(z, h) = 272 — 23/6 +
hz* 4 ... Of particular interest should be the fix-points of the o-transformation,
namely wo(z,0) and wu(2,0).

3. The value distribution of the Painlevé transcendents from the viewpoint
of Nevanlinna Theory is almost completely understood, due to work of Wittich
and Schubart, see [19, 20, 24, 25], and also [22] for equation (IV). One problem,
however, is still open: Are there any solutions of (I) with finite ramified values?
All is known is that the ramification index satisfies ¥(a) < 1/6 for every a # oo.
We can’t give any answer to that problem, but note the following: suppose (z,)
is any sequence tending to infinity, such that (w(z,)) and (w’(z,)) are bounded
(this is, in particular, the case if w has a finite ramified value). Then the usual
procedure leads to the following situation: the limit case is y" = 6y? + 1, say,
with y(0) = y'(0) = 0, so that we are in the quadratic case y'> = 4y® + 2y. The
point z, is approximately the center of a square, whose vertices 2z, + 7, & i1, are
poles of w, and w’ has zeros approximately at z,, z, £ 7, and z, % ir,, where

l_1/4

Tp ~ const.|z, . Of course, our method cannot distinguish between doubly

a-points of w and points where w and w’ are simultaneously uniformly bounded.

6. The second and fourth transcendents

The methods in Sections 3 to 5 also apply to the second and fourth transcendents.
Most details are left to the reader; we just note the changes which have to be
made to adapt the method. We start with Painlevé’s second equation

(1) W = o+ 2w+ 2wd,
with first integral

2
w'” =wt + 20® + 20w — U, where U’ = w?.
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The local unit of scale at a regular point 2z = zy now is
r(20) = min{|w(z0)| ™", |w'(20)| 7/, 20| ~1/?}.
The re-scaling “Ansatz”
Yn(2) = rpw(zy, +742),
rn, = r(2p), leads to the differential equation
Yo =243 + 12 znYn + Tozys + o0,
with limit equation
y' =2y +ay, ¥'(0)=yo, y'(0)=uy,
a= lim 2 2n, Yo = Jim rnw(z,) and y, = Jim rZw'(2,),

and max{|al, |yol, lyol} = 1.
At a pole p, w has the Laurent series expansion

wiz) =e(z—p) = Lz —p) - 2FE

=P =)

€ = +1; the coefficient h remains undetermined.
Qur function V is now
V=U-v'/w

with corresponding linear differential equation

and

47

The scaling unit at a pole p is min{|p|=/2, |h|~/*} < |p|~'/2, provided the goal

[V(p)| = O(|p|?), i-e., |h| = O(|p|?), is reached. Then

Y et =00,

0<|pr|<r

and hence T(r,w) = O(r®). To reach this goal one has to show that |z| = O(|w|?)
and |V||lw|~2 < a|V|]z|"! + K|z| outside Q(¢). The proof is the same as in I-case.
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There are, however, particular solutions of order 3/2, see Schubart and Wittich
[20], namely solutions which also satisfy one of the Riccati equations

!

z 2
w = =
2+w

z
and w' = 5 w?.

These solutions have order of growth 3/2 and solve (IT) with o = £1/2.
Painlevé’s fourth equation is commonly written as

(IV) 2uww” = w'” + 3wt + 82w + 4(z2 — a)w? + 26;

« and 3 are fixed parameters. Since w = 0 is a singularity of (IV), it is advisable
to work with w(z) 4 2 rather than w itself. This is also indicated by the Laurent
series expansion at a pole of w. Set

T = 1(zn) = min{|zn| ™} fw(za)| 7, ' (20) |71/}

and
Yn(2) = Tnw(zn + Tn2) + Tnzn + 122

to obtain, in the limit with a = lim,_ 00 Th2n, Yo = liMy oo Tnw(zy) + a and
yh = limy, 00 72w’ (2y,), the differential equation

2y —a)y" =y +3(y — a)* + 8a(y — a)® + 1a’(y - a)%.

It is obvious (and important) that y does not vanish identically, since we have
max{lal, |yol, |yp|} > 0. Differentiating, dividing by 2(y —a) and integrating again
finally yields, after re-arranging terms,

y' =2y - 2a%y+b, y(0)=1yo, ¥'(0) =yp y#0O,

where b is some constant of integration.
Equation (IV) has first integral

w'? = w + 42w + 4(z2 — a)w2 — 28— 4wU
with U’ = w? + 22w. At a pole z = p we have
1
w(z) +z=e(z—p)"" + —3-(ep2+26a— D(z—p)+hlz—p)*+---,

€ = #1, and again h is unknown resp. free. The value h occurs in V(z) =
U() - w'(2)/(w(z) + 2) at 2 =,

V(p) = 2ap + 2h — 2ep.
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The differential equation for V is, almost surely,

, dzw' 20 — 24 4022 + 28  w' +4daz  , 2w-2z
= - -2t - —=V.
(w+2)3 (w+ 2)? w2z (w+ 2)?

The goal now is to prove the estimate |V (p)| = O(|p|®), this showing that the
series expansion for w(z) + 2z about z = p has radius of convergence at least
¢|p|™1, ¢ > 0 an absolute constant. From this it then easily follows that

S el 2= 00,

0<pn|<r

and hence n(r) = O(r*), N(r,w) = O(r*) and T(r,w) = O(r*). To reach the
goal one has to prove, similar to case I, that |2| = O(|w + 2|), |w'| = O(|w + 2|?)

and
[2w — 22|

w i oP |V|§0|—V—|+K|z[2
w b4

|2
as z — 0o outside the e-neighbourhood Q(e) of the zeros of w + 2.

We note, however, that (IV) has also solutions of order A = 2; see [22]. One
example is given by the solutions of the Riccati equations

w =2zw+w? or w =—2zw— w?,

which have order of growth A = 2, and which solve equation (IV) with parameters
a =F1 and 8 = 0. A second example is due to Gromak [5]: every solution of

W+ 4w —wt — 4w — 42— )uw +4=0

solves also (IV) with parameters 8 = 2, @ # 0, and has order of growth A = 2.

Appendix A: The differential equation y'* = Q(y)

We will give a short course on the differential equation
y’2 =Q(y), Q a polynomial of degree 3 or 4,

for the convenience of the reader. By a simple transformation of type v(z) =
M (y(az)), M a suitably chosen Mdobius transformation and a some appropriate
constant, it may be brought to the Weierstrass normal form v’ 2= g3 ot — g3,
ignoring the cases (equivalent to) v’ 2=vand v =1- 2.

We remark that local solutions clearly exist by the Picard Existence Theorem,
and that they admit unrestricted analytic continuation by a theorem of Painlevé,
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so that the whole theory of elliptic functions can be built upon certain algebraic
differential equations; see Rellich [18].

The solutions are constants, or non-constant rational, simply periodic or doubly
periodic, this depending on whether the discriminant A = g3 — 27g2 vanishes or
not. We briefly discuss these cases now:

1. Constant solutions are of course zeros of the polynomial Q(c) = 4¢3 —

g2¢ — g3.

2. Rational non-constant solutions occur if and only if go = g3 = 0. They
have the form v(z) = (2 — 20) 2.

3. In the degenerate case A = 0, but gag3 # 0, simply periodic non-constant
solutions occur. For v/ = 4(v+2¢)(v—c)?, ¢ # 0, the general non-constant
solution is v(z) = —2¢ — 3ctan?(zg + v/—3c z).

4. In the generic case, the solutions are elliptic functions, Weierstrass gp-
functions; they occur for A # 0. We mention two cases of particular
interest:

(a) The quadratic case g3 = 0. The periods (poles) of every solution
form a square grid. Given any period parallelogram ( “period square”)
with vertices 0,27, 2(1 + ¢)7,2i7, say, then v' has zeros at 7,i7 and
(1 + ¢)7, which is also a (doubly) zero of v itself.

(b) The hexagonal case g = 0. The poles may be viewed as the vertices
of a triangulation of the plane by equilateral triangles. Each pole is
surrounded by six poles which form the vertices of a regular hexagon.

In any case, at the pole z = 0, say, v has the Laurent series expansion

v(z)=z—2+‘—g—%z2+—;%z4+csz6+-w.

We remark that we have spent much work in Section 3 to show that the hexa-
gonal case cannot occur as limit case. The estimate A(w) < 5/2 depends on the
estimate |h| = O(|p|*/2), while the hexagonal case occurs as a limit if and only if

Il = o(hf*/3).

Appendix B: The Boutroux papers

The paper [2] (127 pages) consists essentially of four parts, only the first two
being of interest for us. In the first part Boutroux develops a theory of entire
functions of finite order, based on Hadamard’s Theorem; in the second part he
considers logarithmic derivatives of these functions, with applications to the first
and second Painlevé equation. He shows that for w = —(E'/E)’ in the first case,
E has genus 2 and order 5/2, with an estimate of the counting function of zeros
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of E as follows: 75/2/logr < n(r) < r%20(r), with 6(r) unbounded and slowly
increasing. This part is not easy to read, e.g., when Boutroux derives estimates of
type |f(2)] < en’ry
mais qui deviendra infiniment grand en méme temps que r1.”

143

2, where ... u un nombre qui sera fize dans cette couronne,

The paper [3] appeared in two parts; of particular interest for us is the first
one (122 pages, second part 61 pages), where Boutroux develops some kind of
asymptotic integration for non-linear differential equations. Painlevé’s equation
y" = 6y® — 6z (we use Boutroux’s terminology) is transformed by X = 2254,
Y =z~ Y2y into , v

" Y 4 2
Y +Y-%F:6Y —6.

For | X| large, the solution is compared with an appropriate solution of the equa-
tion Y]’ = 6Y{ —6. Considering rather complicated asymptotic integration meth-
ods via analytic continuation of local inverse functions, and with a considerable
amount of technique, Boutroux is able to show that the poles of Y are asymptot-
ically distributed in the same way as are the poles of Yy. This distribution can
be pulled back to the z-plane. Since the poles of Yy form a lattice or are equally
spaced on a line, Boutroux’s conclusion is that the counting function of poles of Y
is O(r?), and hence the counting function of poles of y is O(r2*(5/4)) = O(r5/2).
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